Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H+-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8

نویسندگان

  • Kanako Yano
  • Takahiro Yanagisawa
  • Kyosuke Mukae
  • Yasuo Niwa
  • Yuko Inoue
  • Yuji Moriyasu
چکیده

Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H(+)-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H(+)-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy.

Autophagy is an intracellular process for vacuolar degradation of cytoplasmic components. Thus far, plant autophagy has been studied primarily using morphological analyses. A recent genome-wide search revealed significant conservation among autophagy genes (ATGs) in yeast and plants. It has not been proved, however, that Arabidopsis thaliana ATG genes are required for plant autophagy. To evalua...

متن کامل

Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis.

Upon encountering oxidative stress, proteins are oxidized extensively by highly reactive and toxic reactive oxidative species, and these damaged, oxidized proteins need to be degraded rapidly and effectively. There are two major proteolytic systems for bulk degradation in eukaryotes, the proteasome and vacuolar autophagy. In mammalian cells, the 20S proteasome and a specific type of vacuolar au...

متن کامل

Knockdown of mitofilin inhibits autophagy and facilitates starvation-induced apoptosis in HeLa cells

Objective(s): Mitofilin contributes to the maintenance of mitochondrial structure and functions. This study was undertaken to determine the mechanisms underlying its regulation of apoptosis.  Materials and Methods: Mitofilin was knockdowned by specific short hairpin RNA (shRNA) and the stable HeLa cell clone was selected. The autophagy a...

متن کامل

Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways.

Autophagy is an important mechanism for nonselective intracellular breakdown whereby cytosol and organelles are encapsulated in vesicles, which are then engulfed and digested by lytic vacuoles/lysosomes. In yeast, this encapsulation employs a set of autophagy (ATG) proteins that direct the conjugation of two ubiquitin-like protein tags, ATG8 and ATG12, to phosphatidylethanolamine and the ATG5 p...

متن کامل

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015